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Abstract 

This paper presents a special scientific analytical 
methodology to conduct geostatistical spatial analysis, 
Variogram modeling and interpolation by kriging 
method using terrain elevation data measured over 
geographical spatial unit, while accounting for 
anisotropic behavior of terrain within this unit. The 
methodology which includes the design of surface 
interpolation that gives weights to all data points, starts 
by performing geostatistical analysis and building the 
Variogram chart. The Variogram models that best 
representing the data is computed by using standard 
mathematical regression functions. The modeling 
process is achieved by using iterative methods and 
nonlinear least squares optimization process. The 
coherence between Variogram models constraint and 
the weights used in the kriging system ensures 
statistically the best unbiased estimators as well as 
minimum variances for the interpolated values. Kriging 
reduces the unrealistic smoothing surfaces inherited in 
other interpolation methods. It is also robust with 
respect to very small spatial differences in data points 
positions, where they are included in the process. There 
are a large number of semi-Variogram models that 
could be employed, although different models may lead 
to different interpolations. The study focuses on the ten 
most popular models (some of them recently 
discovered). The mean value of absolute variances 
provides valuable information help us to select which 
model is the best from several candidates. If anisotropy 
exists in variography according to different directions, 
then several Variogram models needs to be determined.  

Special Matlab programs were written by the author for 
implementing all stages of the above methodology. The 
study has shown that the interpolation process by 
Kriging fails in some cases and inaccurate in other 
cases Thus we need easy and fast computational tools 
performing many experiments at the same time giving 
clear representation results and final error analysis, so 
that the best solution is reached at last. This was the 
main and most important achievement of this study. 

 

خاصة من أجل نمذجة  تحلᘭلᘭة تطبيق منهجᘭة
استᜓمال بᘭانات إرتفاعᘭة حقلᘭة "الفارᗫوغرام" و 

 ᗷاستخدام طᗫᖁقة "كᗫᖁجينغ"

  الدكتور المهندس محمد صالح العᘘدالله

 جامعة دمشق –᛿لᘭة الهندسة المدنᘭة 
 

ملخصال  

ᘌقدم ᒯذا المقال منهجᘭة علمᘭة خاصة في التحلᘭل الإحصائي المᜓاني 
والإستᜓمال ᗷطᗫᖁقة "كᗫᖁجينغ" لبᘭانات  ماجة للفارᗫغر النمذو 

مقاسة ضمن مساحة جغرافᘭة مع الأخذ ᗷعين  ةرتفاعᘭإطبوغرافᘭة 
الإعتᘘار السلوك غير المتجاᙏس لتضارᚱس الأرض. تتضمن المنهجᘭة 
 يوضح عملᘭة استᜓمال السطح بឝعطاء أوزان لجميع بᘭانات 

᠍
تصمᘭما

 ᖔل جيᘭجراء تحلឝدأ بᘘث يᘭحصائي لتغيرات النقاط حលو  اعاتالارتف
إᙏشاء "مخطط التغيرᗫة" يᙬبع ذلك نمذجة "الفارᗫوغرام" والإلᘘاس 

 ᗷمنحن
᠍
ر النموذج الأفضل. يتم ᘘاإخت ᘭات رᗫاضᘭة معᘭارᗫة وأخيرا

الإلᘘاس عن طᗫᖁق تطبيق الحل اللاخطي ᗷالترᘭᗖعات الصغرى 
ᗖᖁة الصغرى لمᘌات الحدᘌب المتتالي حتى الوصول للنهاᗫᖁات عوالتق

من خلال العلاقة المتᚏنة بين شرط تᘘعᘭة نموذج  الرواسب. 
الفارᗫوغرام من جهة والأوزان المستخدمة في نظام كᗫᖁجينغ من جهة 
 الحصول على أفضل تقديرات غير منحازة 

᠍
أخرى، نضمن إحصائᘭا

 نقلل أوو 
᠍
هذه نتفادى ب تᘘاينات أصغᗫᖁة للقᘭم المستᜓملة. أᘌضا

 ᜓمالالاستلساء (الᝣاذᗷة) الملازمة لطرق الطᗫᖁقة تأثير السطᖔح الم
 كᗫᖁجينغ

᠍
 من ᗷعضها  الأخرى. وأخيرا

᠍
ᛒسمح بوجود نقاط قᘘᗫᖁة جدا

ᒯنالك عدد كبير من نماذج  الᘘعض وᚱستوعبها في العملᘭة. 
عليها، وᗖالرغم من أن ᛿ل منها قد  الاعتماد م التي ᘌمكن ارᗫوغر االف

ج ة على عشرة نماذ الدراس ركزتيؤدي إلى نᘭᙬجة استᜓمال مختلفة. 
 و 

᠍
. تقدم قᘭمة الاᙬᜧشافᗖعض منها حدᘌث ᒯي الأᜧثر استخداما

لنموذج ا لاختᘭار معلومات مفᘭدة  ᗷالقᘭمة المطلقة وسطي التᘘاينات
الأمثل بين مجموعة من النماذج الصالحة. في حالة عدم وجود 
التجاᙏس الذي نكᙬشفه من مخططات التغيرᗫة ᗷاتجاᒯات مختلفة، 

عتᘘار إدخال أᜧثر من نموذج واحد في لأخذ ᗷعين الإ عندᒯا ᘌجب ا
  الحل. 

نامج بر  ᗷاستخدامقام المؤلف بتحضير مجموعة من البرامج الخاصة 
᛿ل مراحل المنهجᘭة أعلاه. أثᙫتت الدراسة أن   اختᘘار ماتلاب ᗷغاᘌة 

ᗷطᗫᖁقة كᗫᖁجينغ تفشل في ᗷعض الحالات وغير  الاستᜓمالعملᘭة 
نحتاج إلى أدوات سهلة وسرᗫعة تقوم  دقᘭقة في حالات أخرى ولهذا 

مخططات ᗷعمل إختᘘارات عدᘌدة في آن واحد وتعطي نتائج و 
واضحة وتحلᘭل نهائي للأخطاء في ᛿ل تجᗖᖁة و᛿ل ذلك ᗷقصد الوصول 

ما تم إنجازه من خلال ᒯذه ه ᛿انت من أᒯم إلى أفضل حل. ᒯذ
  الدراسة. 

Key Words: Variogram Analysis and Estimation, 
Variogram Modeling, Optimization, Geospatial 
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Introduction 

Spatial statistics and geostatistics have developed to 
describe and analyze the variation in both natural and 
man-made phenomena on, above or below the land 
surface. Spatial statistics includes any of the formal 
techniques that study entities that have a spatial index 
(Cressie 1993). Geostatistics is embraced by this 
general umbrella term, but originally it was more 
specifically concerned with processes that vary 
continuously, i.e. have a continuous spatial index. The 
term geostatistics applies essentially to a specific set of 
models and techniques developed largely by Matheron 
(1963) in the 1960s to evaluate recoverable reserves for 
the mining industry. These ideas had arisen previously 
in other fields; they have a long history stretching back 
to Mercer and Hall (1911), Youden and Mehlich (1937), 
Kolmogorov (1941), Matérn (1960) and Krige (1966).  

Geostatistics has since been applied in many different 
fields, such as agriculture, fisheries, hydrology, 
geology, meteorology, petroleum, remote sensing, soil 
science, GIS and so on. In most of these fields the data 
are fragmentary and often sparse, therefore there is a 
need to predict from them as precisely as possible at 
places where they have not been measured. This paper 
covers two of the principle techniques of geostatistics 
that solve this need for prediction; the Variogram 
Estimation and Variogram Modeling. The first one 
depends on geostatistics and spatial statistics while the 
second one depends on mathematics. 

A brief summary only is given here of the theory that 
underpins geostatistics (for more detail see Journel and 
Huijbregts, 1978; Goovaerts, 1997; Webster and Oliver 
2007). Most spatial properties vary in such a complex 
way that the variation cannot be defined 
deterministically. To deal with this spatial uncertainty a 
different approach from the traditional deterministic 
methods of spatial analysis was required that relies on a 
stochastic or probabilistic approach. The basis of 
modern geostatistics is to treat the variable of interest as 
a random variable. This implies that at each point x in 
space there is a series of values for a property, )(xZ , 

and the one observed, )(xz , is drawn at random 

according to some law, from some probability 
distribution. At x, a property )(xZ  is a random variable 

with a mean μ and variance 2 . The set of random 

variables, )( 1xZ ,…, )( NxZ  is a random process, and 

the actual value of Z observed is just one of potentially 
any number of realizations of the random process. In 

classical statistics this set of observed values, the 
realization, is the population. The modeling and 
simulation of natural phenomena are based on the 

assumption that the a process }),({ Dxxz   is a 

realization of a stochastic (or random) function )(xZ  

where Dis a fixed subset in dR (a positive d-
dimensional space). Matheron (1962) called the-
quantity )(xZ a regionalized random variable, allowing 

the presence of inhomogeneity in the physical process 
as well as emphasizing the natural continuity of space 
within the subset D. It has been established that fitting 
invalid covariance model to the Variogram can yield to 
a negative-definite variance )(YVar , where Y represents 

any linear combination of )(xZ . The problem when 

using such models, is that it does not guarantee a unique 
solution of the ordinary kriging system and the same 
holds for any kind of simulation based on kriging, thus 
from this perspective we say that they are invalid. The 
idea is then to search for a valid Variogram model that, 
as a measure of correlation, is closest to the 
experimental Variogram. (Some authors call )(h  as the 

Variogram instead of Semivariogram). The space of 
valid variograms is a large set of parametric family or 
‘basic models’ , that are known to be positive-definite. 
We can also enlarge this family by combining those 
functions to form new ones that are also positive-
definite and produce what is called a nested structures 
or nested models. Some preliminary assumptions have 
to be made in order to make the statistical inference 
about )(xZ  possible, thus we start from definition of 

those hypothesis that form the basis of most 
geostatistical theory. 

 

Second-order Intrinsic Stationarity 
Assumptions  

Stationarity exists when the probabilistic distribution 

of )(xZ  is invariant and does not depend on x. let us 

call m the trend (or drift), which can be expressed as 

the expectation of the random variable )(xZ  

)2(),)(Pr()(

)1(,))((

DxzxZzF

DxmxZE

x 
  

In order to estimate an optimal linear predictor (using 
Kriging for example), an additional assumption 
isneeded. Having sufficient number of sampled pairs

njixzxz ji ,...,1),(),(),(  , where Dxx ji ),(  refer to 

two different locations in D , and linked by a vector

jiij xxh  , let the function  
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)3(,),()())(),(( DxxhCxxCxZxZCov jiijjiji   

defines the Covariogram, or the stationary covariance 
function. Any random function )(xZ satisfying (1) and 

(2) and possess a stationary covariance function, i.e. the 
Covariogram (3) exists, is said to be a Second-order 
Stationary Process. Furthermore, if )( ji xxCov   is 

only a function of hxx ij  only, then )(Z  is called 

the isotropic Covariogram. On the other hand, if the 
random function )(xZ satisfying (1) and (2) and possess 

a stationary variance function, i.e. the Variogram (4) 
exists, then it is said to be Intrinsically Stationary 
Process. It is clear that the Second-order Stationarity 
hypothesis implies the Intrinsic Stationarity, but the 
converse is not true.  

Variogram and Semivariogram 

Observations closer together tend to be more alike and 
statistically correlated thanobservations farther apart. In 
geostatistics, this idea of autocorrelation is quantified 
through a function called a semivariogram. The quantity 

)(2 h that defined by,  

)4(,),(2)(2))(),(( DxxhxxxZxZVar jiijjiji  

 
Which is a function of only the increment

jiij xxh  is 

called the Variogram and )(h or Semivariogram by 

Matheron (1962). The latter name is most popular, (and 
will be used frequently through this paper). Its estimation 
is achieved by takinghalf of the average square difference 
between two samples valuesapproximately separated by a 
predefined lags h:  





)(

1

2 )5())()((
)(2

1
)(

hN

k
jix xZxZ

hN
h  

Where: )(hN is the number of distinct pairs ijp  

belonging to a separation vector h, and )(),( ji xZxZ  are 

the sampled values at the beginning location and end 
location respectively. Thus, we can define the 
Variogram function as the variance of only the 
increment vector h.  

Cross Variogram  

Let     DxxZxZxZxYxYxY nn  ,')(),...,()(,')(),...,()( 11
 

be two co-located spatial processes, where each is 
assumed to possess a Variogram thus  

DxxxZxZVarxx

xYxYVarxx

jijijiZ

jijiY





,)),(),(()(2

)6())(),(()(2



  

There are two ways to generalize the previous notations 
to account for cross-dependence between the two 
processes )(Y and )(Z . The most natural one for 

multivariate spatial prediction (Cokriging) is  

)7(,)),(),(()(2 DxxxZxYCovxx jijijiYZ   

In similar manner to the Semivariogram, another 
measure of spatial variability used by Cokrigingunder 
special conditions called Cross Semivariogram, due to 
Journel and Huijbregts (1978), and can be estimated by 
taking half of the average of cross product of all sampled 
pairs, having two different attributes, and associated 
with two different locations separated by a predefined 
separation lag h,  





)(

1

)8()].()()][()([
)(2

1
)(

hN

k
jijiYZ xZxZxYxY

hN
h  

Covariogram and Correlogram  

The function DxxhCxZxZCov jiijji  ,),())(),(( , is given 

earlier by expression (8), defines the Covariogram. Notice 
that this statistics has another name like Auto-Covariance 
function known in time series analysis. The Covariogram 
can be estimated using the following formulae,  

 













)(

1

)(

1

)(

1

)10()(
)(

1
,)1()(

)(

1

)9()()()(
)(

1
)(

hN

k
jxj

hN

k
ixi

hN

k
xjxiji

xZ
hN

mxZ
hN

m

xxxZxZ
hN

hC

 

On the other hand, the Correlogramis another spatial 
statistics denoted by )(h (in time series terms this is called 

Auto-Correlation function). This statistics can be estimated 
under the assumption that 0)( hC as follows, 

)11(
)0(

)(
)(

C

hC
h   

Check that 1)( h when )0()()( ChChC   .  

The quantity )0(C  is called the sill of the Semivariogram. In 

fact the sill )0(C  defines the upper bound of the 

Semivariogram model for h  or practically for
0hh   

where
0h  defines the range. This quantity can be 

decomposed into a Variogram )(h  and Covariogram )(hC  . 

First consider the relation  

)12(,)),(),((2

))...(())(())(),((

DxxxZxZCov

xZVarxZVarxZxZVar

jiji

jiji




.
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Recall form (3) and (4), 

DxxhxZxZVar

hCxxCxZxZCov

jiijji

ijjiji





,),(2))(),((

)()())(),((

 .
 

In addition, under the second order stationarity assumption 
we can write

)13()0(]))([())(())(( 2 CmxZExZVarxZVar ji   

)15(
)0(

)(
1

)0(

)(
)(

)14()()0()(

)(2)0(2)(2

C

h

C

hC
h

hCCh

hCCh












 

A Variogram function can be deduced from a covariance 
function using the formula (14), but in general the reverse is 
not true because some Semivariogram models like the linear 
models or power models  have no covariance function 
counterparts, as they grow without bounds. If the assumption 
that the mean of the tail values

xim , is not the same as the 

mean of the head values
xjm , then the Correlogram, is 

slightly defined in different way,  

)18(
)(

1
)(

)17(
)(

1
)(

)16(
)()(

)(
)(

)(

1

22

)(

1

22


















hN

k
hj

hN

k
hi

mx
hN

hC

mx
hN

hC

hChC

hC
h

 

Positive definite conditions  

Let )(xZ  be a stationary random process with 

expectation m and covariance 0)( hC  or 

Semivariogram )(h . Let Y be any finite linear 

combination of )(xZ as follows,  





n

i
ii xZY

1

)19()(  

for any set real numbers or weights vector 

  niW i  1, . This linear combination and its 

variance must be positive-definite, that is  

 
i j

jiji xxCYVar )20(0)()(   

The last expression can be written in matrix form  

)21(0)(  WCWYVar h
t  

Where
hC  is the Covariance matrix that is defined by a 

covariance function 0)( hC  and a set of points
ix , thus 

the function )(hC  is said to be positive-definite in order 

to ensure the positive-definiteness of the variance

)(YVar  . On the other hand, the Semivariogram )(h  is 

said to be conditionally negative-definite function in 
order to guarantee the positive-definiteness of )(YVar . 

If we rewrite (14) in matrix form corresponding to a set 
of points

ix ,  

)22(0 hh CC   

where the matrix
h represents all Semivariogram 

functions )(h , 
0C  is a matrix of the same size as

h

whose all elements are equal to the sill )0(C  of 

Semivariogram. Therefore  

)23(00)(  WWWCWYVar h
t

h
t  

In the case when the sill does not exist and only the 
intrinsic hypothesis is assumed, then the variance of Y 
is defined on the condition that 

)24(0)(0  WWYVar h
t

i
i .

 

Thus when handling linear combination of random 
variables, then the Semivariogram can only be used 
together with conditions on the weights guaranteeing its 
existence. 

Behavior of the phenomenon near the 
origin(Nugget Effect) 

The Semivariogram expectation at a very small scale, 
which describes the behavior of phenomenon near the 
origin, is known as the nugget effect, after Matheron 
(1962). This is because it is believed that micro-scale 
variation is causing a discontinuity near the origin. In 

terms of Semivariogram prediction, nugget effect
0c  

is defined by    )25(0)( 00  ch h  

The behavior at a very small scale is very important as it 
indicates the type of discontinuity of the phenomenon near 
the origin, and we can distinguish three types of 
phenomena:  

 continuous and differentiable near the origin; 

0,0)(  hh  

 discontinuous or non-differentiable near the 
origin, then we have nugget effect;  

0,0)( 0  hch  

 white noise process with constant variance and 
zero-covariance (pure nugget);  

hch  ,0)( 0 . 

Statistically speaking, if the phenomenon is continuous (or 
expected to be continuous) at the micro-scale, then the 
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only reason for 00 c  is the measurement error. This 

means that if the Variogramis modeled with different 
sampling schemes or using different approaches, the value 

of
0c would fluctuate around its true value, thus

mems ccc 0
 , where

msc  represents the nugget effect at 

the micro-scale, while 
mec  represents measurements error. 

In practice, there is a problem to determine
0c  from data 

whose separations h are too large to capture accurate 

micro-scale information. Typically, it is determined by 
extrapolation of Variogram estimates from lags closest to 
zero.  

Parametric Isotropic Semivariogram  
Models 

A review of the most frequently used isotropic 
Semivariogram models are given,as well as the general 
conditions that a model should satisfy in order to be 
valid.Those models can be classified into two categories: 
models with a sill(or transition models) and Models 
without a sill (recall from a previous section that forthe 
second category a covariance function does not exist and 
only a Variogram model )(h is defined). 

To the first category goes: the Spherical model, the 
Exponential model, the Gaussian model, the Rational 
quadratic model and the hole-effect model, while To the 
second category goes: the Linear model, the nugget effect 
model, the power model and theLogarithmic model.  

 

FIG.1  The square root differences cloud for elevation data 

There are many parametric functions that satisfy the 
properties of the semivariogram (see, e.g., Journel and 
Huijbregts 1978; Chiles and Delfiner 1999). We say that 
a semivariogram model is valid in d dimensions (i.e., in 

dR ) if it satisfies the folloing conditions: (let’s refer to 

)( ixZ  by Z(s) and )( jxZ  by Z(u) for simplicity): 

 )26(),()( hh     

the autocorrelation between Z(s) and Z(u) is the same as 
that between Z(u) and Z(s)]. 

 

 ,0)0(  , since, Var(Z(s) − Z(s)) = 0. (27) 

 ,,0)/)((
2  hashh  

 )( must be conditionally negative definite, that is  

for any number of 
locations  {s(i), 
i=1,…,m} andreal numbers {a(i),….,a(m)} satisfying  





m

i
ia

1

0   this condition is analog of the positive-

definite condition for variance-covariance matrices. 
Here below is given some of the ten most popular 
models: 

 Linear Model   

,0,),( 0 





 h

a

h
cch   (28) 

 Spherical Model    

)0(,

)(,

2

1

2

3
),(

0

3

0
s

ss

ss
s ah

ahcc

a

h

a

h
cc

h 

































(29) 

 

 

 Gaussian Model  

0,)exp(1),( 2

2

0 









 h

a

h
cch

g

g
 (30) 

 

 Exponential Model   
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 Circular Model   (32)  
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 K-Bessel (Wittle) Model  
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(33) 
 

 Sine Model (Hole Effect model)  
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 Pentaspherical Model   
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 Rational Quadratic Model:     
 

0)/,1/(),(
22
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(36) 

 Power Model   
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Remark: Parameters .0,0,0,)',,( 00  rsrs accacc

refers to the three parameters : Nugget effect, Sill and 
Range respectively (FIG.3). Parameters

,...},,,,,{ wkrges cccccc in all models refers to the Sill. 

,...},,,,,{ wkrges aaaaaa in all models refers to the Range. 

All models are valid in 1, dRd  except Spherical, Sine 

and Pentaspherical models are valid in 1, dRd .  

There are many more parametric semivariogram models 
not described here [see, Armstrong (1999), Chiles and 
Delfiner (1999), and Olea (1999) ]. In addition, the sum of 

two semivariogram models that are both valid in dR is also 

a valid semivariogram model in dR , so more complex 
models can be generated by adding two or more of these 
basic semivariogram models (Christakos 1984) 

 
 

FIG.2  Typical semivariogram with Sill, Range and Nugget Effect 

Semivariogram models created this way are referred to 
as models of nested structures. 

 
FIG.3  Some theoretical semivariogram models showing Sill 

and Range Positions 

Estimating the Semivariogram 

The semivariogram can be estimated easily from 
data{ܼ(݅ݏ) ∶  ݅ =  1, . . . , ܰ}under the assumption of 
intrinsic stationary so that equations (6) and (11) hold. 
Usingrules of expectation, we can write the Variogram 
as 

(ℎ) ߛ2 = + ݏ)൫ܼݎܸܽ   ℎ) −  ൯  (38)(ݏ)ܼ 

= + ݏ)ܼ)]ܧ   ℎ)  − [ଶ((ݏ)ܼ  + ݏ)ܼ)ܧ] −   ℎ)  −  ଶ[((ݏ)ܼ 

From equation (6), [ܼ(ݏ௜)] = ௜ݏ∀  ݉ ∈  so the second ,ܦ
term is zero. Thus, to estimate the Variogram we need 
only to estimate ݏ)ܼ)]ܧ +  ℎ)  −  ଶ] Since((ݏ)ܼ 
expectations are just statistical averages, one way to 
estimate this term is to average all observed squared 
differences [ܼ(ݏ௜)  −  ଶ for pairs of observations[(௜ݏ)ܼ 
taken thesame distance apart in the same direction. This 
is the rationale behind the method of moments estimator 
of the semivariogram, given by 

 



)(

1

2)()(
)(2

1
)(

hN

k
jix sZsZ

hN
h

(39)
 

where N(h)is the set of distinct pairs separated by h [i.e., 
N(h) = {(ݏ௜ ௜ݏ: (௝ݏ, −  =|௝= h, i, j = 1, . . . , n} and |ܰ(ℎ)ݏ

the number of distinct pairs in N(h)]. Last Equation gives 
what is often referred to as the classical 
semivariogramestimator. It gives point estimates of γ (·) 
at observed values of h. If the process is isotropic, we 
need only consider pairs lag ||h|| apart. If the process 
isanisotropic, the semivariogram can be estimated in 
different directions by selectinga particular direction and 
averaging pairs of data lag ||h|| apart in that 
particulardirection.With irregularly spaced data, there 
may be onlyone pair of locations that is h apart (two for 
||h|| ). Averages based on only one ortwo points are poor 
estimates with large uncertainties. We can reduce this 
variationand increase the accuracy of our point estimates 
by allowing a tolerance on thelags. Thus, we will define 
tolerance regions and group the sample pairs into 
theseregions prior to averaging. This is analogous to the 
procedure used in making ahistogram, adapted to two 
dimensions (FIG.4). 

Typically, one specifies tolerance regions through the 
choice of five parameters: the direction of interest; the 
angle tolerance, which defines a sector centered on the 
direction of interest; the lag spacing, which defines the 
distances at which the semivariogram is estimated; the 
lag tolerance, which defines a distance interval centered 
at each lag; and the total number of lags at which we wish 
to estimate the semivariogram.  
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FIG.4 Tolerance regions for semivariogram estimation 

Tolerance regions should include 20-30 pairs of points 
each to ensure that the empirical semivariogram at each 
point is well estimated (Journel and Huijbregts 1978). 
Usually, a setof directions and associated angle 
tolerances are chosen together so that they completely 
cover two-dimensional space (Fig.5 and 6). 

FIG.5 Empirical directional semivariograms and fitted models 

One should construct lag intervalsso that the total number 
of lags is between 10 and 25 in order to see the structureof 
the semivariogram. One should be careful of theuse of very 
short maximum lag distances. The semivariogram is a 
picture of yourdata spatially: the sill and the range, if they 
exist, provide estimates of the processvariance and the 
zone of influence of the observations, and information at 
largerlags can indicate large-scale trends. 

Fitting Semivariogram Models 

The empirical semivariogram ߛ(∙)is not guaranteed to be 
conditionally nonnegative definite. This is not a problem if 
we limit ourselves to inferences about thespatial continuity 
of the process, but it can lead to problems when used for 
spatialprediction and mapping where we need reliable 
estimates of prediction uncertainty.  

 

FIG.6Empirical directional semivariogram with 2D 
representation showing )(h (z-axis), lags(x-axis) and 

directions(y-axis) 

Thus, we will need to find a valid theoretical 
semivariogram function that closelyreflects the features 
of our empirical semivariogram. We limit our choices to 
aparametric family of theoretical variograms (like those 
described in section Parametric Isotropic 
Semivariogram Modelsin this paper)and seek to find the 
parameter estimates that best fit the data. 

Nonlinear Least Squares Regression Method 

The idea here is to select a theoreticalsemivariogram 

family and find a vector of parameters ߠ෠ that makes this 
theoreticalmodel “close enough” to the empirical 
semivariogram. Let ߛො(∙) be the empiricalsemivariogram 
estimated at K lags, h(1), . . . , h(K) and let ߛ(ℎ;  be the(ߠ
theoreticalsemivariogram model whose form is known 
up to θ. Since the relationship betweenߛො(ℎ) and h is 
usually nonlinear, nonlinear least squares regression can 
be used toestimate θ.Nonlinear ordinary least squares 

(OLS) finds ߠ෠ minimizing the squared distance between 
the empirical and theoretical semivariograms, that is, 
minimizing 

(49) 

However, the estimates ߛො(ℎ(݆))are correlated and have 
different variances,violating the general assumptions 
underlying OLS theory. The usual statistical adjustment 
to OLS when observations are correlated and heterois 
generalizedleast squares (GLS). Cressie (1985) applied 

nonlinear GLS to semivariogram estimation, finding ߠ෠ 
minimizing the objective function 

ොߛ] − ′[(ߠ)ߛ ∙ ଵି(ߠ)ܸ ∙ ොߛ] −  (50)    [(ߠ)ߛ

 the variance–covariance matrix that depends on(ߠ)ܸ
 isunknown, so thebest estimator is ߠ is unknown andߠ
computed iteratively from starting values that are 
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improved at each iteration untilthe objective function is 
minimized.Taking ܸ(ߠ) ≡  ,gives the OLS estimatorܫ
and taking  

(ߠ)ܸ ≡ ,{ො(ℎଵ)ߛ)ݎܸܽ}݃ܽ݅݀ … ,  ො(ℎ௞)}     (51)ߛ)ݎܸܽ

gives a nonlinear weighted least squares (WLS) 
estimator. Determining the elements ofܸ(ߠ) requires 
knowledge of the fourth-ordermoments of Z. Cressie 
(1985) showed that a nonlinear WLS estimatorbased on 
the expression: 

[൫ℎ௝൯ߛ]ݎܸܽ ≈ ;൫ℎ௝൯ߛ2ൣ ൧ߠ
ଶ

/ܰ(ℎ௝)              (52) 

yields an estimation procedure that often works well in 
practice. Thus, weightingthe OLS objective function 
inversely proportional to the (approximate) variance 
ofthe empirical semivariogram estimator gives an 

estimator of θthat minimizes theweighted regression 
sum of squares: 

(ߠ)ܴܹܵܵ = భ
మ

∑
ಿ(೓ೕ)

ቂംቀ೓ೕቁ;ഇቃ
మ

ೖ
ೕసభ ො൫ℎ௝൯ߛ] − ;൫ℎ௝൯ߛ  ଶ   (53)[ߠ

This approach is an approximation to WLS and offers a 
pragmatic compromisebetween OLS and GLS. It gives 
more weight where there is more “data” [large(ℎ௝) ] and 

near the origin [smallߛ൫ℎ௝൯;  .thus improving on OLS ,[ߠ

Although it will not be as good as GLS, but ease of 
computation is a definite advantage. It can be used even 
when the data are not Gaussian, and empirical studies 
have shown (Zimmerman 1991) this approach to be 
fairly accurate in a variety of practical situations. 

InverseDistance Interpolation 

An inverse-distance interpolator is simply a weighted 
average of neighboring values. The weight given to each 
observation is a function of the distance betweenthat 
observation’s location and the grid point ݏ଴ at which 
interpolation is desired.Mathematically, the general 
inverse-distance interpolator is written as 

 (54) 

Here݀଴,௜  is the distance from the grid point location ݏ଴ 

to the ith data locationݏ௜. The weighting power, p, is 
selected to control how fast the weights tend tozero as 
the distance from the grid node increases, based on 
assumed increasingsimilarity between observations 
taken closer together. As the power increases, the 
contribution (to the interpolated value) from data points 
far from the grid node decreases. Distance powers 
between 1 and 3 are typically chosen, and taking p = 2 

gives the popular inverse-distance-squared interpolator. 
[Burrough (1986)]. 

Interpolation by Kriging 

Kriging is a geostatistical technique for optimal spatial 
prediction. We emphasizethe distinction between 
prediction, which is inference on random quantities, 
andestimation, which is inference on fixed but unknown 
parameters. Georges Matheron,the founding father of 
geostatistics, introduced thisterm in one of his early 
works developing geostatistical theory (Matheron 
1963).There are many different types of kriging, 
differing by underlyingassumptions and analytical goals. 
One can consult some referencesto learn more about 
Kriging methods, (e.g., Journel and Huijbregts 1978; 
Isaaks and Srivastava 1989; Cressie 1993; Wackernagel 
1995; Chiles and Delfiner 1999; Olea 1999; Stein 
1999).The basic and most popular method is Ordinary 
Kriging which will be briefly discussed here. 

Ordinary Kriging (OK): 

Assume that ܼ(∙) is intrinsically stationary process [i.e., 
having unknown mean, µ, and known 
semivariogram, ߛ(ℎ), where {ܼ(݅ݏ): ݅ =  1, . . . , ܰ} 

represent the data and we want to predict the value of the 
ܼ(∙) process at an unobserved location, ܼ(ݏ଴), ଴ݏ ∈  As .ܦ
with the inverse distance methods described in previous 
section, the ordinary kriging (OK) predictor is a 
weightedaverage, 

(55) 

However, instead of specifying an arbitrary function of 
distance, we determine the weights based on the data using 
the semivariogram and two statistical optimality criteria: 
unbiasedness and minimum mean-squared prediction 
error. For unbiasedness, the predicted value should, on 
average, coincide with the value of the unknown random 
variable, ܼ(ݏ଴) In statistical terms. Unbiasedness constraint 

requires ൣܧ መܼ௢௞(ݏ଴)൧ = [(଴ݏ)ܼ]ܧ =  which means that ,ߤ

∑ ௜ߣ = 1ே
௜ୀଵ . To ensure the second optimality criterion, we 

need to minimize mean-squared prediction error (MSPE), 

defined as ൣܧ መܼ௢௞(ݏ଴) − ൧(଴ݏ)ܼ
ଶ
, subject to the 

unbiasedness constraint. One method for solving 
constrained optimization problems is the method of 
Lagrange multipliers. With this method, we need to 
find ߣଵ , … , ேߣ  and a Lagrange multiplier, m, that minimize 
the objective 

(56) 
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Function. The second term is essentially a penalty, 

minimized when ∑ ௜ߣ = 1ே
௜ୀଵ , thus ensuring that our overall 

minimization constraint. Now this implies that 

 

(57) 

Taking expectations of both sides of this equation gives 

 

(58) 

Thus the equation (56) becomes 

(59) 

To minimize (59), we differentiate with respect to 
, ଵߣ … ,  ேand m in turn and set the partial derivativesߣ
equal to zero. This gives a system of equations,   referred 
to as the ordinary kriging equations, 

(60) 

We solve these equations for ߣଵ , … ,  ே(and m), and use theߣ
resulting optimal weights in equation (55) to give the 

ordinary kriging predictor. Note that መܼ.(ݏ଴)has weights that 
depend on both the spatial correlations between , ܼ(ݏ଴)and 
each data pointܼ(ݏ௜): ݅ =  1, . . . , ܰ, and the spatial 
correlations between all pairs of data points ܼ(ݏ௜)and 
= ݅ :(௜ݏ)ܼ  1, . . . , ܰandܼ൫ݏ௝൯: ݆ = 1, . . . , ܰ . Usually we write 

the Kriging System of Equations (60) in matrix form as 

(61) 

Note that we must calculate ߣ଴for each prediction location 
 ଴. However, only the right-hand side of equation (61)ݏ
changes with the prediction locations through ߛ଴. Since the 
coefficient matrix depends only on the data locations and 
not on the prediction locations, we need only invert thisw 
matrixonce and then multiply by ߛ଴vector to obtain a 
prediction for any ݏ଴ ∈  The minimized MSPE, also .ܦ

known as the kriging variance, which is a measure of the 
uncertainty in the prediction ofܼ(ݏ଴), is obtained as follow 
 

 

(62) 

 
 

Implementation in Matlab(3 stages): 
(1)Variogram Estimation,  
(2)Semivariogram Modeling, 
(3) Kriging Interpolation. 

 

 Dataset that has been used for testing programs 
performance (which cover area of 1000×1000m)is 
given in the form of 3-column matrix (x,y,z) . It is 
a terrain elevation data consist of 266 points 
distributed as shown in (Fig.8).  
 

 
Fig.8 Dataset Locations and their distribution (color 
indicate the z-value) 

 

 Data in the study has been downloaded from 
internet which was related to a small forested area 
in Wisconsin, USA, provided by Department of 
Forest Resources, University of Minnesota. 

 

 By constructing histogram of the dataset values (z 
values) (Fig.9), we see that some z-values have very 
large frequencies (like z=630 and z=650) and this 
means that lower areas is represented by large 
number of points. 

 
Fig.9 Data histogram shows the frequency of Z-Values 

 

 EstiamteVariogram.m  is a Matlab functions were written 
by the author for computation and visualization the 
variogram. It calculates the experimental variogram for 
concrete number of lags-distances and directions 
(anisotropic variogram).  
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Program Input: 
 
  x - array with coordinates. Each row is a location in a 
size(x,2)-dimensional space (e.g. [x y elevation]).   y - 
column vector with values of the locations in x. 

nrbins - number bins the distance should be grouped 
into(default = 20). 

maxdist - maximum distance for variogram calculation 
(default = maximum distance in the dataset / 2).  

type -   'gamma' returns the variogram value (default) 
'cloud1' returns the binned variogram cloud , 'cloud2' 
returns the variogram cloud . 

plotit - true -> plot variogram - false -> don't plot (default). 
subsample - number of randomly drawn points if large 
datasets are used.scalar (positive integer, e.g. 3000) inf 
(default) = no subsampling 

anisotropy - false (default), true (only in 2D) 
thetastep - if anisotropy is set to true, specifying thetastep 
allows you to change the angle width (default 30 degrees) 

Program Output: 
  d - structure array with distance and gamma – vector 
plot gamma results as shown below (Fig.10). 

 The Program (EstiamteVariogram.m ) which is 
Matlab function,  computes also the Variogram in all 
possible directions defined by separation distances is 
called lag (number of lag distances = 22).  

 

 
Fig.10 the Isotropic Variogram of our data 

 

 One can visualize Variogram anisotropy, which is 
computed and stored in matrix form. This feature is 
very useful to detect certain directions where 
variogram shows distinct characteristics. Thequadratic 
‘lowess’ interpolanthas been used to create a smooth 
surface representation. Interpolation here gives better 
understanding of anisotropic variogram than plotting 
the original one. As we see below the behavior of the 
data for each direction is different (directions are given 
in degrees). (Fig.11). 
 

 The programs VarFitModel.m is written by the author 
and used for Semivariogram Modeling and 
visualization of results using the dataset (shown in 
Fig.8) as 2D irregularly spaced data. VarFitModel.m a 
Matlab function that performs a least squares fit of 

various theoretical variograms to an experimental, 
isotropic variogram. The user can choose between 
various bounded (e.g. spherical) and unbounded (e.g. 
exponential and power) models. 

 

 A nugget variance can be modeled as well, but higher 
nested models are not supported. VarFitModel uses 
Matlab fminsearch function, but it should be used 
carefully, because  the problem is, that it might return 
negative variances or ranges. The variogram fitting 
algorithm is in particular sensitive to initial values 
below the optimal solution.  Hence, visually inspecting 
the data and estimating a theoretical variogram by 
hand should always be your first choice. Note that for 
unbounded models, the supplied parameter a0 (range) 
is the distance where gamma equals 95% of the sill 
variance. The returned parameter a0, however, is the 
parameter r in the model. The range at 95% of the sill 
variance is then approximately 3*r.  

 

Fig.11  Anisotropic Variogram  (ߛ values vs. lag Distances 
and   Directions in degrees). As we see that Variability 
behavior in the East-West Direction is completely different 
from that behavior in North-South Direction 

 Ten most popular Fitting models types that have been 
analyzed and fitted to the empirical VariogramData. 
Theyare:Spherical,Gaussian, Exponential,Circular, 
Hole Effect (Wave), Pentaspherical, Rational 
Quadratic,, Power,K-Bessel (Wittle) and.BLinear 
model gives strange output for Kriging so it is 
avoided. Below 10 Models (Figures 12,…,20) have 
been fitted with the empirical variogram data using 
program EstiamteVariogram.m .  
 

Table.1 shows the summary of semivariogram results. 
Model parameters (shown on each of the figures) are: 
model Name, model Type, Sill, Range, RMS which 
reflects the goodness of fit, and model function. 
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Table.1 Summary of the Semivariogram Analysis Results 

 
 

FIG.12  Fitting Spherical Model 
 

Fig.13 Fitting Gaussian Model 

 

Fig.14 Fitting Exponential Model 

 

Fig.15  Fitting Circular Model 

 

Fig.16Fitting Hole Effect (wave) Model 

Fig.17   Fitting Pentaspherical Model 

 

Fig.18  Fitting Rational Quadratic Model 

 



 
- 12 -     

 

Fig.19 Fitting Power Model 

 

Fig.20  Fitting Whittle Model 

Implementing Kriging Interpolation  
 
krigInterpolate.mis a Matlab function written by the 
author, which uses ordinary kriging to interpolate a 

variable z measured at a locations (x, y) at unsampled 
locations (xi, yi).The function requires the variable 
vstruct that contains allnecessary information on the 
variogram. vstruct is the main output argument of the 
previous function VarFitModel.m.  The function 
always includes all observations to estimate values at 
unsampled locations. This maynot be necessary when 
sample locations are not within theautocorrelation range 
but would require something like a k nearest neighbor 
search algorithm. Thus, the algorithmsworks best for 
relatively small numbers of observations (100-
500).Note that kriging fails if there are two or more 
observations at the same location.  

Input arguments: 
vstruct   structure array with variogram information as 
returned fromVarFitModel.mfunction. 
x,y       coordinates of observations 
z         values of observations 
 xi,yi    coordinates of locations for predictions  
chunksize number of elements in zi that are processed 
at one time.The default is 100, but this depends largely 
on the available main memory and numel(x). 

Output arguments: 
zi   kriging predictions, zivar   kriging variance 

 

Summary of Results and Conclusions 

Table.1 shows the summary of semivariogram results. 
From the table we see that the average Sill is 988, the 
minimum is 950.3 (Blinear model) and the maximum is 
998.6 (Power model is excluded). The average Rangeis 
381.7 the minimum is 268.2 (Blinear model) and the 
maximum is 528.0 (Rational Quadratic model). The 
average RMS is 79.9 (which indicates goodness of fit) 
fluctuates between 56.3 and 135.2, thus Exponential and 
Power models are not among the best fitting models. 
 

The Final digital terrain model (DTM) is generated (as 
contour lines) by above programmed Kriging Function 
(krigInterpolate.m) and is visualized by a Matlab 
Function(contourf.m) (Figure No.21,.., No.26 ). As we see 
from the figure that the performance of seven models 
(namely: Spherical, Gaussian, Exponential, Circular, 
HoleEffect, Pentaspherical) was very good in spite of some 
differences. Rational Quadratic model produced bad result 
and unrealisticcontoursshape. Wittle and Blinear models 
produces very unrealistic results and sometimes the Kriging 
process fails without results. Matlab gives an error due to 
the pseudo-inverse of the kriging matrix cannot be 
executed. Finally Circular, Exponential and Power models 
generated some artifacts. 
 

Figures (No.27, .. ,No. 30) represent Kriging Variance for 
several models (namely, Spherical, Gaussian, Exponential, 
Circular, Hole Effect, Pentaspherical and Rational Q.). 
We notice that Gaussian, Circular and Ratinal Q. models 
have been produced smallVariances.  

Finally, one thing has to be considered that the 
semivariogram is estimated from the dataavailable (in our 
case the terrain data), it is describing the variability of a 
spatial process. So even though aparticular model is 
deemed best for a particular data set by a statistical 
comparison,it may not be the best choice. For example, the 
Gaussian model is often selected asbest with automatic 
fitting criterion, but it also corresponds to a process that is 
oftenunrealistically smooth. Ultimately, the final choice of 
model should reflect both theresults of the statistical 
model fitting procedure and an interpretation 
consistentwith the scientific understanding of the process 
being studied. 
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Fig.21 Contours representation of Kriging (Spherical model) 

Fig.22 Contours representation ofKriging (Gaussian Model) 

Fig.23Contours representation of Kriging (Exponential Model) 

Fig.24Kriging Contours (Circular Model) 
 

Fig.25Kriging Contours (Pentaspherical Model) 

Fig.26 Kriging Contours (Hole Effect Model) 
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Fig.27  Kriging Variance -Spherical Model (left), Gauss 

Model (right) 

 
Fig.28  Kriging Variance-Exponential Model (left) 

Circular model (right) 

 
Fig.29  Kriging Variance  – Hole Effect model ( left), 

Pentaspherical model (right) 
 

 

 
Fig.30  Kriging Variance - RationalQuadratic model 
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