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Abstract

This paper presents a special scientific analytical
methodology to conduct geostatistical spatial analysis,
Variogram modeling and interpolation by kriging
method using terrain elevation data measured over
geographical spatial unit, while accounting for
anisotropic behavior of terrain within this unit. The
methodology which includes the design of surface
interpolation that gives weights to all data points, starts
by performing geostatistical analysis and building the
Variogram chart. The Variogram models that best
representing the data is computed by using standard
mathematical regression functions. The modeling
process is achieved by using iterative methods and
nonlinear least squares optimization process. The
coherence between Variogram models constraint and
the weights used in the kriging system ensures
statistically the best unbiased estimators as well as
minimum variances for the interpolated values. Kriging
reduces the unrealistic smoothing surfaces inherited in
other interpolation methods. It is also robust with
respect to very small spatial differences in data points
positions, where they are included in the process. There
are a large number of semi-Variogram models that
could be employed, although different models may lead
to different interpolations. The study focuses on the ten
most popular models (some of them recently
discovered). The mean value of absolute variances
provides valuable information help us to select which
model is the best from several candidates. If anisotropy
exists in variography according to different directions,
then several Variogram models needs to be determined.

Special Matlab programs were written by the author for
implementing all stages of the above methodology. The
study has shown that the interpolation process by
Kriging fails in some cases and inaccurate in other
cases Thus we need easy and fast computational tools
performing many experiments at the same time giving
clear representation results and final error analysis, so
that the best solution is reached at last. This was the
main and most important achievement of this study.
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Introduction

Spatial statistics and geostatistics have developed to
describe and analyze the variation in both natural and
man-made phenomena on, above or below the land
surface. Spatial statistics includes any of the formal
techniques that study entities that have a spatial index
(Cressie  1993). Geostatistics is embraced by this
general umbrella term, but originally it was more
specifically concerned with processes that vary
continuously, i.e. have a continuous spatial index. The
term geostatistics applies essentially to a specific set of
models and techniques developed largely by Matheron
(1963) in the 1960s to evaluate recoverable reserves for
the mining industry. These ideas had arisen previously
in other fields; they have a long history stretching back
to Mercer and Hall (1911), Youden and Mehlich (1937),
Kolmogorov (1941), Matérn (1960) and Krige (1966).

Geostatistics has since been applied in many different
fields, such as agriculture, fisheries, hydrology,
geology, meteorology, petroleum, remote sensing, soil
science, GIS and so on. In most of these fields the data
are fragmentary and often sparse, therefore there is a
need to predict from them as precisely as possible at
places where they have not been measured. This paper
covers two of the principle techniques of geostatistics
that solve this need for prediction; the Variogram
Estimation and Variogram Modeling. The first one
depends on geostatistics and spatial statistics while the
second one depends on mathematics.

A brief summary only is given here of the theory that
underpins geostatistics (for more detail see Journel and
Huijbregts, 1978; Goovaerts, 1997; Webster and Oliver
2007). Most spatial properties vary in such a complex
way that the wvariation cannot be defined
deterministically. To deal with this spatial uncertainty a
different approach from the traditional deterministic
methods of spatial analysis was required that relies on a
stochastic or probabilistic approach. The basis of
modern geostatistics is to treat the variable of interest as
a random variable. This implies that at each point x in
space there is a series of values for a property, Z(x),

and the one observed, z(x), is drawn at random
according to some law, from some probability
distribution. At x, a property Z(x) is a random variable
with a mean x and variance o*. The set of random

variables, Z(x,),.--,Z(x,) is a random process, and

the actual value of Z observed is just one of potentially
any number of realizations of the random process. In
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classical statistics this set of observed values, the
realization, is the population. The modeling and
simulation of natural phenomena are based on the
assumption that the a process{z(x),x € D} is a

realization of a stochastic (or random) function Z(x)

where Dis a fixed subset inR?(a positive d-
dimensional space). Matheron (1962) called the-
quantity Z(x) a regionalized random variable, allowing
the presence of inhomogeneity in the physical process
as well as emphasizing the natural continuity of space
within the subset D. It has been established that fitting
invalid covariance model to the Variogram can yield to
a negative-definite variance Var(Y), where Y represents

any linear combination of Z(x). The problem when

using such models, is that it does not guarantee a unique
solution of the ordinary kriging system and the same
holds for any kind of simulation based on kriging, thus
from this perspective we say that they are invalid. The
idea is then to search for a valid Variogram model that,
as a measure of correlation, is closest to the
experimental Variogram. (Some authors call y(4) as the
Variogram instead of Semivariogram). The space of
valid variograms is a large set of parametric family or
‘basic models’ , that are known to be positive-definite.
We can also enlarge this family by combining those
functions to form new ones that are also positive-
definite and produce what is called a nested structures
or nested models. Some preliminary assumptions have
to be made in order to make the statistical inference
about Z(x) possible, thus we start from definition of
those hypothesis that form the basis of most
geostatistical theory.

Second-order Intrinsic Stationarity
Assumptions

Stationarity exists when the probabilistic distribution
of Z(x) is invariant and does not depend on x. let us

call m the trend (or drift), which can be expressed as
the expectation of the random variable Z(x)

E(Z(x))=m,VYxeD 1)
F(z)=Pr(Z(x)<z),VxeD (2)

In order to estimate an optimal linear predictor (using
Kriging for example), an additional assumption
isneeded. Having sufficient number of sampled pairs
2(x,), 2(x,), (i, j) € L,...,n» Where (x x ) e D refer to
two different locations in D , and linked by a vector
hy=x,—x,> let the function



Cov(Z(x,), Z(x,)) = C(x; = x;) = C(h;),Vx,,x;€ D (3)
defines the Covariogram, or the stationary covariance

Sunction. Any random function Z(x) satisfying (1) and

(2) and possess a stationary covariance function, i.e. the
Covariogram (3) exists, is said to be a Second-order
Stationary Process. Furthermore, if Cov( X, —x;) is

only a function of ij - x"H = ||| only, then Z(-) is called

the isotropic Covariogram. On the other hand, if the
random function Z(x) satisfying (1) and (2) and possess

a stationary variance function, i.e. the Variogram (4)
exists, then it is said to be Intrinsically Stationary
Process. 1t is clear that the Second-order Stationarity
hypothesis implies the Intrinsic Stationarity, but the
converse is not true.

Variogram and Semivariogram

Observations closer together tend to be more alike and
statistically correlated thanobservations farther apart. In
geostatistics, this idea of autocorrelation is quantified
through a function called a semivariogram. The quantity

2y(h) that defined by,

Var(Z(x,),Z(x,)) =2y(x,—x,)=2y(h;),Vx,,x,€eD  (4)

Which is a function of only the increment hy=x,—x, is

called the Variogram andy(h)or Semivariogram by

Matheron (1962). The latter name is most popular, (and
will be used frequently through this paper). Its estimation
is achieved by takinghalf of the average square difference
between two samples valuesapproximately separated by a
predefined lags /:

N(h)

1
7.(h)= MZ(Z()C) Z(x) ()

Where: N(h)is the number of distinct pairs Py
belonging to a separation vector £, and z( x,),Z(x,) are

the sampled values at the beginning location and end
location respectively. Thus, we can define the
Variogram function as the variance of only the

increment vector h.

Cross Variogram

Lety(x) =[Y(x),.. Y (x)}. Z(x) = [Z(x)),.... Z(x,)},Vx € D

be two co-located spatial processes, where each is
assumed to possess a Variogram thus

20, (x, = x,) = Var(Y (x,), Y (x,) (6)
2y,(x;, —x;)=Var(Z(x,),Z(x,)),Vx,,x; € D

There are two ways to generalize the previous notations
to account for cross-dependence between the two
processes Y (-)and Z(-). The most natural one for

multivariate spatial prediction (Cokriging) is

29y, (%, — x,) = COV(Y(X,»),Z(X‘/‘)), Y, X; € D (7N

In similar manner to the Semivariogram, another
measure of spatial variability used by Cokrigingunder
special conditions called Cross Semivariogram, due to
Journel and Huijbregts (1978), and can be estimated by
taking half of the average of cross product of all sampled
pairs, having two different attributes, and associated
with two different locations separated by a predefined
separation lag A,

1
Yz (h) = SN & Z[Y(X) Y(x)IZ(x) = Z(x)). ()

Covariogram and Correlogram

The function Cov(Z(x,), Z(x,)) = C(h,), ¥x,,x, € D, is given

earlier by expression (8), defines the Covariogram. Notice
that this statistics has another name like Auto-Covariance
function known in time series analysis. The Covariogram
can be estimated using the following formulae,

C(h)—mz[zu)zu )-(xax) 9

N(h) N(h)

my N(h)z (x) (D),m =N & ZZ(X) (10)

On the other hand, the Correlogramis another spatial
statistics denoted by p(#) (in time series terms this is called

Auto-Correlation function). This statistics can be estimated
under the assumption that C(%) > 0 as follows,

C(h)

p(h) =@

(1)
Check that p() =1when C(h) = C(~h) = C(0) .

The quantity C(0) is called the sill of the Semivariogram. In
fact the sillC(0) defines the upper bound of the
Semivariogram model for HhH —» oo or practically fothH > HhOH
where H hoH defines the range. This quantity can be
decomposed into a Variogram y(4) and Covariogram C(4) .
First consider the relation

Var(Z(x,), Z(x,)) =Var(Z(x,)) +Var(Z(x)))...

—=2-Cov(Z(x,), Z(x,)),Vx;,x, € D (12) -



Recall form (3) and (4),
Cov(Z(x,), Z(x,)) = C(x; = x;) = C(hy)
Var(Z(x),2(x,)) = 27 (h;), V%, x, € D
In addition, under the second order stationarity assumption
we can write

Var(Z(x))) =Var(Z(x,)) = E(Z(x)-m)*]1=C(0) ~ (13)

2y(h) =2C(0)-2C(h) =

y(h)=C(0)~C(h) (14)
_C _y_r)
p(h) = ) =1 () 15)

A Variogram function can be deduced from a covariance
function using the formula (14), but in general the reverse is
not true because some Semivariogram models like the linear
models or power models have no covariance function
counterparts, as they grow without bounds. If the assumption
that the mean of the tail values , is not the same as the

mean of the head values m,» then the Correlogram, is

slightly defined in different way,

)
P = ey oG 16)
N(h)
C-h) = ﬁ D )
Crh) = mmf)xi e, ()

Positive definite conditions

LetZ(x) be a stationary random process with
expectation ~m  and  covarianceC(h)>0  or
Semivariogram y(h). Let Y be any finite linear
combination of Z(x) as follows,

Y =i,1,.-2(x,.) (19)

i=1
for any set real numbers or weights vector
W={A}1<i<n. This linear combination and its

variance must be positive-definite, that is
Var(Y)=Y>" 4 -2, C(x,—x,)20 (20)
i
The last expression can be written in matrix form
Var(Y)=W'-C,-W 20 21
Where C, is the Covariance matrix that is defined by a
covariance function C(%) >0 and a set of points x, , thus

the function C(#) is said to be positive-definite in order

to ensure the positive-definiteness of the variance
Var(Y) - On the other hand, the Semivariogram y(4) is

-4-

said to be conditionally negative-definite function in
order to guarantee the positive-definiteness of Var(Y).

If we rewrite (14) in matrix form corresponding to a set
of points x,,

I, =¢-C, (22)

where the matrix T, represents all Semivariogram
functions y(#), G, is a matrix of the same size as T,
whose all elements are equal to the sillC(0) of

Semivariogram. Therefore
Var(Y)=W'-C, - W >0= W'-T,-W <0 (23)

In the case when the sill does not exist and only the
intrinsic hypothesis is assumed, then the variance of Y
is defined on the condition that

> A4=0 = Var(Y)=-W'-T,-W <0 (24)

Thus when handling linear combination of random
variables, then the Semivariogram can only be used
together with conditions on the weights guaranteeing its
existence.

Behavior of the phenomenon near the
origin(Nugget Effect)

The Semivariogram expectation at a very small scale,
which describes the behavior of phenomenon near the
origin, is known as the nugget effect, after Matheron
(1962). This is because it is believed that micro-scale
variation is causing a discontinuity near the origin. In
terms of Semivariogram prediction, nugget effect ¢,

is defined by y(h), ,,=¢,>0 (25)

The behavior at a very small scale is very important as it
indicates the type of discontinuity of the phenomenon near
the origin, and we can distinguish three types of
phenomena:

e continuous and differentiable near the origin;
y(h)—> 0, HhH -0

e discontinuous or non-differentiable near the
origin, then we have nugget effect;
|7

y(h) —>c, >0, -0

e white noise process with constant variance and
zero-covariance (pure nugget);

y(h)—>¢c, >0, Vh.

Statistically speaking, if the phenomenon is continuous (or
expected to be continuous) at the micro-scale, then the



only reason for¢, >0 is the measurement error. This

means that if the Variogramis modeled with different
sampling schemes or using different approaches, the value
ofc,would fluctuate around its true value, thus

¢, =c¢,, +¢,, » wherec,  represents the nugget effect at
the micro-scale, while ¢, represents measurements error.
In practice, there is a problem to determine ¢, from data
whose separationsHhHare too large to capture accurate

micro-scale information. Typically, it is determined by
extrapolation of Variogram estimates from lags closest to
Zero.

Parametric Isotropic Semivariogram
Models

A review of the most frequently used isotropic
Semivariogram models are given,as well as the general
conditions that a model should satisfy in order to be
valid. Those models can be classified into two categories:
models with a sill(or transition models) and Models
without a sill (recall from a previous section that forthe
second category a covariance function does not exist and
only a Variogram model y(#)is defined).

To the first category goes: the Spherical model, the
Exponential model, the Gaussian model, the Rational
quadratic model and the hole-effect model, while To the
second category goes: the Linear model, the nugget effect
model, the power model and theLogarithmic model.

20
151

10 A

Square root of height difference

Distance between spot heights

FIG.1 The square root differences cloud for elevation data

There are many parametric functions that satisfy the
properties of the semivariogram (see, e.g., Journel and
Huijbregts 1978; Chiles and Delfiner 1999). We say that
a semivariogram model is valid in d dimensions (i.e., in
R%) if it satisfies the folloing conditions: (let’s refer to
Z(x,) by Z(s) and Z(x;) by Z(u) for simplicity):

* y(=h)=y(+h), (26)

the autocorrelation between Z(s) and Z(u) is the same as
that between Z(u) and Z(s)].

*  4(0)=0,, since, Var(Z(s) — Z(s)) = 0. 27)
/)y -0,  as

] = oo,
y(-)must be conditionally negative definite, that is

m m

Zzaiaj)’(si —5;) <0 of

i=1 j=1

for any number
locations {s(i),
i=1,...,m} andreal numbers {a(i),....,a(m)} satisfying

Z a; =0 this condition is analog of the positive-

i=1

definite condition for variance-covariance matrices.
Here below is given some of the ten most popular
models:

Linear Model

]/(h,G) =C,+c¢ (%} h>0, (28)

Spherical Model

eao |38 1(nY
) =1""""12a  2\a, ) J(0<h<a,)

cy+c,,(h>ay) 29)
o Gaussian Model
hZ
y(h,9)=co+cg~ I-exp(——5) |, h>0
e (30)
e Exponential Model
y(h,0) =co+ce~(l—exp(—h)} h>0
e 31
e Circular Model (32)
2
y(h,0)=c,+c, -[l—z»acos[h]+2h l—th
72- aC/ 72- . a(‘!‘ aC/

e K-Bessel (Wittle) Model

7O =c,+e, ~[1 —h~Besse1K(1,h])}
ay a, 33)

e Sine Model (Hole Effect model)

y(h,0)=c, +¢,, '[1 - eXp(ﬂj ~sin(h])]
h ahe (34)

e Pentaspherical Model

3 5
15h s(n) 3(h
y(h,0)=c,+c,- 8—4[] +8[]
a a a (35)



e Rational Quadratic Model:

y(h,0) = cy+c, Al 1A+ 7a,) h>0

(36)
e Power Model

h P
h@)=c,+c-|—|, >1,h>0,
r(h,0)=c, [a) p 37
Remark:  Parameters 9 = (¢, c,,a,)',c, 2 0,c, > 0,a, > 0.
refers to the three parameters : Nugget effect, Sill and
Range respectively (FIG.3). Parameters
{c,,c.,C,,C,,Cr ey i all models refers to the Sill.

g2

{a,.a,,a,.a,,a,,a ..}in all models refers to the Range.

W

All models are valid in R?,d >1 except Spherical, Sine

and Pentaspherical models are valid in R, d =1.

There are many more parametric semivariogram models
not described here [see, Armstrong (1999), Chiles and
Delfiner (1999), and Olea (1999) ]. In addition, the sum of
two semivariogram models that are both valid in R? is also
a valid semivariogram model in R?, so more complex
models can be generated by adding two or more of these
basic semivariogram models (Christakos 1984)

10

Variogram
6
|

Range of Influence:

Nugget Effect

T T T T
Distance Between Points (h)

FIG.2 Typical semivariogram with Sill, Range and Nugget Effect

Semivariogram models created this way are referred to
as models of nested structures.

Sill

Semi variance

abuey (jeanoeld)

Lag

FIG.3 Some theoretical semivariogram models showing Sill
and Range Positions

Estimating the Semivariogram

The semivariogram can be estimated easily from
data{Z(si): i = 1,...,N}under the assumption of
intrinsic stationary so that equations (6) and (11) hold.
Usingrules of expectation, we can write the Variogram
as

2y (h) = Var(Z(s + h) — Z(s)) (38)
= E[(Z(s + h) — Z(s))’] = [E(Z(s + k) — Z(s)HT

From equation (6), [Z(s;)] = m Vs; € D, so the second
term is zero. Thus, to estimate the Variogram we need
only to estimate E[(Z(s + h) — Z(s))?] Since
expectations are just statistical averages, one way to
estimate this term is to average all observed squared
differences [Z(s;) — Z(s;)]? for pairs of observations
taken thesame distance apart in the same direction. This
is the rationale behind the method of moments estimator
of the semivariogram, given by

1 N(h)

Z(s)—Z(s,
] 226 (s,))z(”)

7. ()=

k=1

where N(h)is the set of distinct pairs separated by h [i.e.,
N(h) = {(sy,s5) :s; —sj=h, i,j=1,...,n} and [N(h)|=
the number of distinct pairs in N(h)]. Last Equation gives
what is often referred to as the classical
semivariogramestimator. It gives point estimates of y ()
at observed values of h. If the process is isotropic, we
need only consider pairs lag |h|| apart. If the process
isanisotropic, the semivariogram can be estimated in
different directions by selectinga particular direction and
averaging pairs of data lag |h|| apart in that
particulardirection. With irregularly spaced data, there
may be onlyone pair of locations that is /4 apart (two for
|[h]] ). Averages based on only one ortwo points are poor
estimates with large uncertainties. We can reduce this
variationand increase the accuracy of our point estimates
by allowing a tolerance on thelags. Thus, we will define
tolerance regions and group the sample pairs into
theseregions prior to averaging. This is analogous to the
procedure used in making ahistogram, adapted to two
dimensions (FIG.4).

Typically, one specifies tolerance regions through the
choice of five parameters: the direction of interest; the
angle tolerance, which defines a sector centered on the
direction of interest; the lag spacing, which defines the
distances at which the semivariogram is estimated; the
lag tolerance, which defines a distance interval centered
at each lag; and the total number of lags at which we wish
to estimate the semivariogram.
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FIG.4 Tolerance regions for semivariogram estimation

Tolerance regions should include 20-30 pairs of points
each to ensure that the empirical semivariogram at each
point is well estimated (Journel and Huijbregts 1978).
Usually, a setof directions and associated angle
tolerances are chosen together so that they completely
cover two-dimensional space (Fig.5 and 6).
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FIG.5 Empirical directional semivariograms and fitted models

One should construct lag intervalsso that the total number
of lags is between 10 and 25 in order to see the structureof
the semivariogram. One should be careful of theuse of very
short maximum lag distances. The semivariogram is a
picture of yourdata spatially: the sill and the range, if they
exist, provide estimates of the processvariance and the
zone of influence of the observations, and information at
largerlags can indicate large-scale trends.

Fitting Semivariogram Models

The empirical semivariogram y(*)is not guaranteed to be
conditionally nonnegative definite. This is not a problem if
we limit ourselves to inferences about thespatial continuity
of the process, but it can lead to problems when used for
spatialprediction and mapping where we need reliable
estimates of prediction uncertainty.

* ghXvs. lag, ang with ghY

1000

FIG.6Empirical directional semivariogram with 2D
representation showing y(h) (z-axis), lags(x-axis) and

directions(y-axis)

Thus, we will need to find a valid theoretical
semivariogram function that closelyreflects the features
of our empirical semivariogram. We limit our choices to
aparametric family of theoretical variograms (like those
described in  section  Parametric  Isotropic
Semivariogram Modelsin this paper)and seek to find the
parameter estimates that best fit the data.

Nonlinear Least Squares Regression Method

The idea here is to select a theoreticalsemivariogram
family and find a vector of parameters @ that makes this
theoreticalmodel “close enough” to the empirical
semivariogram. Let (-) be the empiricalsemivariogram
estimated at K lags, i(1), . . ., h(K) and let y (h; 8)be the
theoreticalsemivariogram model whose form is known
up to . Since the relationship betweeny(h) and £ is
usually nonlinear, nonlinear least squares regression can
be used toestimate #.Nonlinear ordinary least squares
(OLS) finds 8 minimizing the squared distance between
the empirical and theoretical semivariograms, that is,
minimizing

K

S [P0 — @) 0]
b=t (49)

However, the estimates ¥ (h(j))are correlated and have
different variances,violating the general assumptions
underlying OLS theory. The usual statistical adjustment
to OLS when observations are correlated and heterois
generalizedleast squares (GLS). Cressie (1985) applied
nonlinear GLS to semivariogram estimation, finding 8
minimizing the objective function

[7—y@1 V(O™ [7-v®] (50

V(0)the variance—covariance matrix that depends on
@is unknown and 6 isunknown, so thebest estimator is
computed iteratively from starting values that are



improved at each iteration untilthe objective function is
minimized. Taking V(@) = Igives the OLS estimator,
and taking

V() = diag{Var([7(hy)}, ..., VarF(hy)} (51)

gives a nonlinear weighted least squares (WLS)
estimator. Determining the elements ofV (6) requires
knowledge of the fourth-ordermoments of Z. Cressie
(1985) showed that a nonlinear WLS estimatorbased on
the expression:

varly(h)] = 2[y(k;); 6]° /N (hy) (52)

yields an estimation procedure that often works well in
practice. Thus, weightingthe OLS objective function
inversely proportional to the (approximate) variance
ofthe empirical semivariogram estimator gives an
estimator of fthat minimizes theweighted regression
sum of squares:

N(Rj)

WRSS() = 1l
v(hj):

[7(h) —v(h;); 612 (53)

This approach is an approximation to LS and offers a
pragmatic compromisebetween OLS and GLS. It gives
more weight where there is more “data” [large(h;) ] and
near the origin [smally(h]-) ; 8], thus improving on OLS.
Although it will not be as good as GLS, but ease of
computation is a definite advantage. It can be used even
when the data are not Gaussian, and empirical studies
have shown (Zimmerman 1991) this approach to be
fairly accurate in a variety of practical situations.

InverseDistance Interpolation

An inverse-distance interpolator is simply a weighted
average of neighboring values. The weight given to each
observation is a function of the distance betweenthat
observation’s location and the grid point s, at which
interpolation is desired.Mathematically, the general
inverse-distance interpolator is written as

N N
Zivp =) Zlsdgt | Y dF.
i=1 i=1 (54)

Hered,; is the distance from the grid point location s,
to the ith data locations;. The weighting power, p, is
selected to control how fast the weights tend tozero as
the distance from the grid node increases, based on
assumed increasingsimilarity between observations
taken closer together. As the power increases, the
contribution (to the interpolated value) from data points
far from the grid node decreases. Distance powers
between 1 and 3 are typically chosen, and taking p = 2
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gives the popular inverse-distance-squared interpolator.
[Burrough (1986)].

Interpolation by Kriging

Kriging is a geostatistical technique for optimal spatial
prediction. We emphasizethe distinction between
prediction, which is inference on random quantities,
andestimation, which is inference on fixed but unknown
parameters. Georges Matheron,the founding father of
geostatistics, introduced thisterm in one of his early
works developing geostatistical theory (Matheron
1963).There are many different types of kriging,
differing by underlyingassumptions and analytical goals.
One can consult some referencesto learn more about
Kriging methods, (e.g., Journel and Huijbregts 1978;
Isaaks and Srivastava 1989; Cressie 1993; Wackernagel
1995; Chiles and Delfiner 1999; Olea 1999; Stein
1999).The basic and most popular method is Ordinary
Kriging which will be briefly discussed here.

Ordinary Kriging (OK):

Assume that Z(+) is intrinsically stationary process [i.e.,
having  unknown mean, 4, and  known
semivariogram, y(h),  where {Z(sD):i = 1,...,N}
represent the data and we want to predict the value of the
Z(+) process at an unobserved location, Z(sy), sy € D. As
with the inverse distance methods described in previous
section, the ordinary kriging (OK) predictor is a
weightedaverage,

N N
Zox(s0) = Z)\r‘z(si)- Zli =1
i=1 i=1 (55)

However, instead of specifying an arbitrary function of
distance, we determine the weights based on the data using
the semivariogram and two statistical optimality criteria:
unbiasedness and minimum mean-squared prediction
error. For unbiasedness, the predicted value should, on
average, coincide with the value of the unknown random
variable, Z(s,) In statistical terms. Unbiasedness constraint
requires E [Zok(so)] = E[Z(sy)] = u, which means that

N . A; = 1. To ensure the second optimality criterion, we
need to minimize mean-squared prediction error (MSPE),

defined as E[Zok(so)—Z(so)]Z, subject to the
unbiasedness constraint. One method for solving
constrained optimization problems is the method of
Lagrange multipliers. With this method, we need to
find A, , ..., Ay and a Lagrange multiplier, m, that minimize
the objective

N 2 N
E (Z/\,vz(s,-) — Z(so)) —2m (in — 1) .
f=1 i=1

(56)



Function. The second term is essentially a penalty,
minimized when Y, A; = 1, thus ensuring that our overall
minimization constraint. Now this implies that

N 2 LA
[Z MZ(si) — Z(So):| = =322 kirj[Z6) — Zs )T
i=1 i=1 j=1

(57
N
+) ilZ(so) — Z(s)T

=1

n gives

N 2 AR 7
E (Z NZ(si) — Z(So)) } == 2D MME [(Z(s,-) - Z(sj))']
i=1 i=1 j=1

: (58)
+ Y ME [(Z(s0) - Z60)P)

i=1

N N N N
722)\.,’)»1')/(5'; *Sj) +22)~,’)/(S07S,‘) —2m (ZA,’ - 1>
= (59)

i=1 j=1 i=1

To minimize (59), we differentiate with respect to
A1, ..., Ayand m in turn and set the partial derivatives
equal to zero. This gives a system of equations, referred
to as the ordinary kriging equations,

N
ZAjV(Si*S_i)‘Fm:V(SO*Si), i=1,...,N (60)

j=1

We solve these equations for 4, , ..., Ay(and m), and use the
resulting optimal weights in equation (55) to give the
ordinary kriging predictor. Note that Z (sy)has weights that
depend on both the spatial correlations between , Z(sy)and
each data pointZ(s;):i = 1,...,N, and the spatial
correlations between all pairs of data points Z(s;)and
Z(sp):i = 1,...,NandZ(s;):j = 1,...,N . Usually we write
the Kriging System of Equations (60) in matrix form as

-1

Al y(si—s1) y(s1—sn) 1 y(so —s1)
Az y(s2 —s1) y(s2—sny) 1 y(so —52)
AN y(sy —s1) yisy —sy) 1 y(so—sn)
m |7 1 0 1
(61)

Note that we must calculate Afor each prediction location
So- However, only the right-hand side of equation (61)
changes with the prediction locations through y,. Since the
coefficient matrix depends only on the data locations and
not on the prediction locations, we need only invert thisw
matrixonce and then multiply by y,vector to obtain a
prediction for any sy € D. The minimized MSPE, also
known as the kriging variance, which is a measure of the
uncertainty in the prediction ofZ(sg), is obtained as follow

02 (s0) =ApYo

N
= ZMV(SO —si)+m

i=1

N N N
= ZZMV(SO —8) — Z Zliljy(si —$;)
i=1

i=1 j=1

(62)

Implementation in Matlab(3 stages):
(1)Variogram Estimation,
(2)Semivariogram Modeling,
(3) Kriging Interpolation.

e Dataset that has been used for testing programs
performance (which cover area of 1000x1000m)is
given in the form of 3-column matrix (X,y,z) . It is
a terrain elevation data consist of 266 points
distributed as shown in (Fig.8).

data (coloring according to z-value)
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Fig.8 Dataset Locations and their distribution (color
indicate the z-value)

e Data in the study has been downloaded from
internet which was related to a small forested area
in Wisconsin, USA, provided by Department of
Forest Resources, University of Minnesota.

e By constructing histogram of the dataset values (z
values) (Fig.9), we see that some z-values have very
large frequencies (like z=630 and z=650) and this
means that lower areas is represented by large
number of points.

histogram of z-values
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Fig.9 Data histogram shows the frequency of Z-Values

o EstiamteVariogram.m is a Matlab functions were written
by the author for computation and visualization the
variogram. It calculates the experimental variogram for

of lags-distances and directions

(anisotropic variogram).

concrete  number



Program Input:

x - array with coordinates. Each row is a location in a
size(x,2)-dimensional space (e.g. [x y elevation]). vy -
column vector with values of the locations in x.

nrbins - number bins the distance should be grouped
into(default = 20).

maxdist - maximum distance for variogram calculation
(default = maximum distance in the dataset / 2).

type - 'gamma' returns the variogram value (default)
'cloud!' returns the binned variogram cloud , 'cloud?'
returns the variogram cloud .

Plotit - true -> plot variogram - false -> don't plot (default).
subsample - number of randomly drawn points if large
datasets are used.scalar (positive integer, e.g. 3000) inf
(default) = no subsampling

anisotropy - false (default), true (only in 2D)

thetastep - if anisotropy is set to true, specifying thetastep
allows you to change the angle width (default 30 degrees)

Program Output:

d - structure array with distance and gamma — vector
plot gamma results as shown below (Fig.10).

e The Program (EstiamteVariogram.m ) which is
Matlab function, computes also the Variogram in all
possible directions defined by separation distances is
called lag (number of lag distances = 22).

| &
1000 # =

Semivariogram ~(h)
@ @
8 8
~
I

3
A

200 &

oL I . .
o 100 200 300 400 500 6800
lag distance h

Fig. 10 the Isotropic Variogram of our data

e One can visualize Variogram anisotropy, which is
computed and stored in matrix form. This feature is
very useful to detect certain directions where
variogram shows distinct characteristics. Thequadratic
‘lowess’ interpolanthas been used to create a smooth
surface representation. Interpolation here gives better
understanding of anisotropic variogram than plotting
the original one. As we see below the behavior of the
data for each direction is different (directions are given
in degrees). (Fig.11).

e The programs VarFitModel.m is written by the author
and wused for and
visualization of results using the dataset (shown in
Fig.8) as 2D irregularly spaced data. VarFitModel.m a
Matlab function that performs a least squares fit of

Semivariogram  Modeling

-10 -

various theoretical variograms to an experimental,
isotropic variogram. The user can choose between
various bounded (e.g. spherical) and unbounded (e.g.
exponential and power) models.

A nugget variance can be modeled as well, but higher
nested models are not supported. VarFitModel uses
Matlab fminsearch function, but it should be used
carefully, because the problem is, that it might return
negative variances or ranges. The variogram fitting
algorithm is in particular sensitive to initial values
below the optimal solution. Hence, visually inspecting
the data and estimating a theoretical variogram by
hand should always be your first choice. Note that for
unbounded models, the supplied parameter a0 (range)
is the distance where gamma equals 95% of the sill
variance. The returned parameter a0, however, is the
parameter r in the model. The range at 95% of the sill
variance is then approximately 3*r.

Variogram Anisotropic Gamma Vakies

Fig. 11 Anisotropic Variogram (y values vs. lag Distances
and Directions in degrees). As we see that Variability
behavior in the East-West Direction is completely different
from that behavior in North-South Direction

Ten most popular Fitting models types that have been
analyzed and fitted to the empirical VariogramData.
Theyare:Spherical,Gaussian, Exponential,Circular,
Hole Effect (Wave), Pentaspherical, Rational
Quadratic,, Power,K-Bessel (Wittle) and.BLinear
model gives strange output for Kriging so it is
avoided. Below 10 Models (Figures 12,...,20) have
been fitted with the empirical variogram data using
program EstiamteVariogram.m .

Table.l shows the summary of semivariogram results.
Model parameters (shown on each of the figures) are:
model Name, model Type, Sill, Range, RMS which
reflects the goodness of fit, and model function.



Model

Sill Range RMS Type

Spheical

961.4 365.2 64.37 Bounded

Gaussian 963.7 306.5 70.61 Unbounded
Exponential 998.6 307.3 103.58 Unbounded
Circular 954.8 316.8 60.57 Bounded

Hole Effect

965.3 448.0 71.53 Unbounded

Pentaspherical 969.1 4214 70.32 Bounded
é{fﬁﬂ 982.1 5280 8533 Unbounded
Power 1159.0 376.1 135.19 Unbounded
Wittle 975.6 480.0 81.47 Unbounded

Blinear 950.3 268.2 56.26 Bounded

Table.1 Summary of the Semivariogram Analysis Results

oo & riing wodl
1000 |- * =
T - = -
= 4
5 /£
& eoo =
£
5 4
e
o
4
ER(ONIBEE) (37N AZ7BC))-12 (1) %)
. T s 55 s %5 =
Panemienn
FIG.12 Fitting Spherical Model
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Fig.13 Fitting Gaussian Model

Semivariogram & Fitting Exponsntial Model

Model = expo
Model Type
il = 998,58
Range = 157.3015

RMS = 1025814

Model Function = 4
@(B.NIBE) (Texp(-n (1)

100 200 300 aco 500 800
tag distance h

Fig.14 Fitting Exponential Model
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Fig.15 Fitting Circular Model
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Fig.16Fitting Hole Effect (wave) Model
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Fig.17 Fitting Pentaspherical Model

Semivariogram & Fitting Rational Quadratic Modal
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Fig.18 Fitting Rational Quadratic Model



Semivariogram & Fitting Power Model
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Fig.19 Fitting Power Model

Semivariogram & Fitting Whittle Mede!
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Fig.20 Fitting Whittle Model

Implementing Kriging Interpolation

krigInterpolate.mis a Matlab function written by the
author, which uses ordinary kriging to interpolate a
variable g measured at a locations (x, y) at unsampled
locations (xi, yi).The function requires the variable
vstruct that contains allnecessary information on the
variogram. vstruct is the main output argument of the
previous function VarFitModelm. The function
always includes all observations to estimate values at
unsampled locations. This maynot be necessary when
sample locations are not within theautocorrelation range
but would require something like a k nearest neighbor
search algorithm. Thus, the algorithmsworks best for
relatively small of observations (100-
500).Note that kriging fails if there are two or more
observations at the same location.

numbers

Input arguments:

vstruct structure array with variogram information as
returned fromVarFitModel.mfunction.

X,y coordinates of observations

z values of observations

xi,yi coordinates of locations for predictions
chunksize number of elements in zi that are processed
at one time.The default is 100, but this depends largely
on the available main memory and numel(x).

Output arguments:
zi kriging predictions, zivar kriging variance
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Summary of Results and Conclusions

Table.l shows the summary of semivariogram results.
From the table we see that the average Sill is 988, the
minimum is 950.3 (Blinear model) and the maximum is
998.6 (Power model is excluded). The average Rangeis
381.7 the minimum is 268.2 (Blinear model) and the
maximum is 528.0 (Rational Quadratic model). The
average RMS is 79.9 (which indicates goodness of fit)
fluctuates between 56.3 and 135.2, thus Exponential and
Power models are not among the best fitting models.

The Final digital terrain model (DTM) is generated (as
contour lines) by above programmed Kriging Function
(krigInterpolate.m) and is visualized by a Matlab
Function(contourf.m) (Figure No.21,.., N0.26 ). As we see
from the figure that the performance of seven models
(namely: Spherical, Gaussian, Exponential, Circular,
HoleEffect, Pentaspherical) was very good in spite of some
differences. Rational Quadratic model produced bad result
and unrealisticcontoursshape. Wittle and Blinear models
produces very unrealistic results and sometimes the Kriging
process fails without results. Matlab gives an error due to
the pseudo-inverse of the kriging matrix cannot be
executed. Finally Circular, Exponential and Power models
generated some artifacts.

Figures (No.27, .. ,No. 30) represent Kriging Variance for
several models (namely, Spherical, Gaussian, Exponential,
Circular, Hole Effect, Pentaspherical and Rational Q.).
We notice that Gaussian, Circular and Ratinal Q. models
have been produced smallVariances.

Finally, one thing has to be considered that the
semivariogram is estimated from the dataavailable (in our
case the terrain data), it is describing the variability of a
spatial process. So even though aparticular model is
deemed best for a particular data set by a statistical
comparison,it may not be the best choice. For example, the
Gaussian model is often selected asbest with automatic
fitting criterion, but it also corresponds to a process that is
oftenunrealistically smooth. Ultimately, the final choice of
model should reflect both theresults of the statistical
model fitting procedure and an interpretation
consistentwith the scientific understanding of the process
being studied.
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Fig.30 Kriging Variance - RationalQuadratic model
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